

Fouling control solutions for slow steaming vessels

HEMPEL

Outline

- Project set-up
- Slow steaming and fouling challenge
- What we intend to do
- The consortium
- Success criteria

Slow steaming paint

- Blue innoship and DMF
- Project partners
 - DTU
 - Hempel
 - Maersk
- Total budget: 6,7 mio DKK
- Bridging between lab-scale and real-life

Slow steaming

- Fuel consumption is proportional to speed³
- Slow steaming is the most effective way to cut costs
- Container vessel trading
 - Slow steaming ~ 15 knots (full speed for a bulk carrier!)
 - Near shore trading

Biofouling on ships

Paint

- Continuous phase
 - Binder
 - Additives
 - Adhesion
 - Film forming
- Discontinuous phase
 - Pigments
 - Colour
 - Opacity
 - Fillers
 - Biocides

Antifouling paint mechanisms

Fouling realese

Fouling defence

Actiguard superior controlled release gives best performance out of minor biocide content.

Why focus on slow steaming vessels?

Slow steaming adds to the fouling pressure of ocean going vessels.

- Lowers the shear on the surface of the coating
 - Fouling organisms find it more easy to attach
 - Decreases the rate of polishing of the antifouling layer
 - Thickens the leached layer
 - Lowers the flux of biocide at the outermost surface

Hull paints and fuel consumption

- In commercial shipping, hull coating roughness is responsible for most of the vessel's fuel consumption
- 10 µm increase in roughness increases the fuel consumption 1%

Hull roughness

	Micro	Macro
Physical	Steel profileMinor corrosionCoating condition	Plate lapsWeld seamsMechanical damageSevere corrosion
Biological	Slime Alg fou	gea ling Animal fouling

Hull roughness

How is this translated into fuel?

TABLE 1				
Hull condition effects				
Hull Condition	%∆ST			
Newly applied applied AF coating	_			
Old system or thin slime	9.4			
Thick slime	26.8			
Algae and small-size shell fouling	50.7			
Medium-size shell fouling	82.3			
Estimated effect of different hull conditions on the total shaft power (ST) for the case of a 7,000 TEU container ship.				

What is the challenge

Improved out-docking condition

Smoothness of paint job

- Sprayability
 - Under difficult conditions
 - Visibility
 - Wind
 - By non-educated spray painters
- Self-levelling properties

Levelling of substrate roughness

- Grinding of welding seems
- A/C substrate

Improved smoothness of different coating systems

Average Hull Roughness (AHR) values expected immediately after the application of different Fouling Control coating systems under different application scenarios

Product	Lab conditions (ideal)	DD – Good substrate and application	DD – Poor substrate and application
HEMPAGUARD X7	49 µm	up to 100 μm	up to 125 μm
HEMPASIL X3	45 µm	up to 110 μm	up to 135 μm
GLOBIC 9000	62 µm	up to 125 μm	up to 175 μm
High silyl AF	67 µm	up to 150 μm	up to 200 μm

Improved out-docking conditions

- Hempel
 - Develop paint systems
- DTU
 - Lab-scale testing
- Maersk
 - Access to real-life roughness-data

Improved long-term AF

- Improved biocide delivery
 - Leached layer-thickness
 - Improved control of polishing-rate
- Hempel
 - Development of paint
 - Bridging of lab-based testing to real-life examples
- DTU
 - Testing and quantification of paint performance
- Maersk
 - Real-life testing

Quantification of performance

- DTU
 - Built/expand a rotor set-up to mimic real-life trading
 - Quantification of development of frictional resistance
 - CFD modelling
- Maersk
 - ROI on dock investments
 - Xtra day
 - Skilled painters
 - Grinding of welding seams

Success criteria

- Improved fuel efficiency for slow steaming (container) vessels
- Out-docking conditions
- Antifouling performance long term
 - Effective biocide delivery
 - Continuous smoothness
- Quantification of ROI on maintenance investments

